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Abstract

Large-scale geostrophic flow across an oceanographic section can be computed from in-situ density pro-

files and satellite-borne sea level anomaly measurements at the section endpoints. Here, uncertainties are

estimated and compared for observations that span the North Atlantic Current. Out of multi-year mooring

records from two sites, Porcupine Abyssal Plain and Central Irminger Sea, 16 months from the 2002–2005

period are available that have sufficient data coverage to observe this current. Transport and uncertainty

estimates from these moorings are compared to results from Argo floats and expendable bathythermographs.

The latter have longer data sets and provide decadal time series with semiannual resolution in time. Typ-

ical uncertainties, which take sensor errors and sub-sampling the eddy field into account, are below 2 Sv

of volume transport for the mooring- and float-based estimates and just below 3 Sv for the expendable

bathythermographs. Peak-to-peak variability occurs on decadal time scales and is about 11 Sv, well above

the observational uncertainty. We can therefore have confidence that the observed signal reflects true changes

in the ocean. The time series is further extended to 25 years duration, using solely the altimetry data by

proxy. The aim of this study is to add value to such time series by understanding and quantifying the

uncertainties and consistency between methods. The methodology is applicable at other locations as well.

Keywords: North Atlantic Current; Porcupine Abyssal Plain; Irminger Sea; Meridional Overturning

Circulation; Atlantic Ocean.

1. Introduction

1.1. Background and Scope

The water volume transported by ocean currents is of interest for a variety of reasons, including to better

understand the role of the ocean in the climate system of the earth. However, the transport of large-scale

ocean circulation on interannual time scales is a quantity that formally requires integration of currents along

a geographic section, requiring measurements at many locations. One approach to eliminating the need for

such large amounts of observations is to make measurements of density and sea surface height at only the two

end points of a section, and to then infer the cross-section flow under the assumptions of geostrophy. Other

techniques exist, such as repeat ship observations with current measurements (Knutsen et al., 2005; Willis,

2010) or mooring arrays that resolve the currents in space and time (Zantopp et al., 2017; Lozier et al., 2019).

The geostrophic approach can be done for sections spanning thousands of kilometers, and the method has

been employed for decades (e. g. Hall and Bryden, 1982; Roemmich and Wunsch, 1985). Using autonomous

platforms that produce continuous time series data, as opposed to a limited number of ship-based surveys

as in the earlier studies, increases the temporal resolution and eliminates the risk of aliasing the natural

variability. To detect and quantify changes with time (e. g. Send et al., 2011), the uncertainty needs to be

determined, in order to assess whether any observed changes statistically stand out beyond the “error bars”.

Danabasoglu et al. (2016) have called for quantifying such error estimates for observations of the Atlantic

meridional overturning circulation (AMOC). The North Atlantic Current (NAC) system is an important
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part of the AMOC (Rossby, 1996), because it carries warm water poleward and towards Europe, thereby

making a significant contribution to the global heat transport. Multiple studies of the NAC (Mercier et al.,

2015; Lozier et al., 2019; Rhein et al., 2019) exist and are ongoing. This paper will add another one, based

on two mooring sites called PAP and CIS (Porcupine Abyssal Plain, Central Irminger Sea), and review and

intercompare the observational uncertainties using different instrumentation to derive the NAC strength and

variability. In particular, estimates will be constructed from moorings with fixed-depth sensors and from

profiling floats of the Argo array. A discussion of expendable bathythermographs (XBTs) is included for

completeness, although the endpoint approach is not well-suited for the characteristics of these instruments.

Satellite altimetry is used together with the moorings, floats, and XBTs. The work is motivated by the

importance of the NAC as a part of the climate system and the AMOC, and by the need to quantify how

well we know changes in different parts of the AMOC.

Our study has its origins in two European projects that deployed the early PAP and CIS moorings

(ANIMATE; Karstensen, 2005) as well as Argo floats (GyroScope; Lankhorst and Zenk, 2006). Monitoring

the lower branch of the AMOC at 16 ◦N with a dedicated mooring array (Kanzow et al., 2006) had just

started at the time, giving rise to the question whether the PAP and CIS morings could measure the NAC as

the upper branch of the AMOC. Unlike the 16 ◦N moorings, PAP and CIS were not specifically designed to

do this. The focus of PAP and CIS was on near-surface biogeochemical measurements, although a subset of

deployments contained the necessary instrumentation for upper-layer transport measurements (temperature

and salinity) throughout the required depth ranges (down to 1000 m). Some 16 months of mooring data out

of the years 2002–2005 can be used to derive the NAC transports this way. After the first Argo deployments,

the question was raised whether nearby float data could substitute for those times when the moorings were

unavailable. Out of these questions, the following emerged: How do different sensor accuracies of moorings

and floats project into uncertainty of the NAC volume transports computed from these data? What are the

effects of the different spatial and temporal resolution of these methods compared to each other? Even if

the two mooring locations and sampling properties were not chosen explicitly for the purpose of monitoring

the NAC, could a meaningful NAC time series be derived from these data?

Figure 1 shows a map of the study area: Here, only data from two locations (PAP and CIS) are used,

which makes the uncertainty estimates across the different methods feasible. The NAC as a whole flows

across the section defined by the PAP and CIS locations, but consists of multiple branches (Lherminier

et al., 2010; Daniault et al., 2016) including the Irminger Current (V̊age et al., 2011). As a depth range, the

pressure range of 0–1000 dbar is used for the transport computations here. This is similar to the depth of the

density surface σ1 = 32.35 used by Lherminier et al. (2007) for their OVIDE section, which is located close to

the PAP-CIS line. We are interested in low-frequency variability of the NAC transport in the upper 1000 m

on interannual time scales, for which the data are averaged into half-year time steps. A precursor version

of this study was part of a thesis paper (Lankhorst, 2007). Other studies that have estimated uncertainties

in observations of the AMOC include those by Kanzow et al. (2006), Lozier et al. (2019), McCarthy et al.
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Figure 1: Map of the study area. Data from within the boxes are used to compute geostrophic flow across the highlighted
section. PAP and CIS are mooring sites at the section end points, shown by star symbols. Each yellow dot in the boxes
represents a vertical profile of temperature and salinity from Argo floats. The thin lines are MDOT contours that bracket the
typical pathway of the NAC. XBT data used in this study are not shown.

(2015), and Sinha et al. (2018) about their mostly mooring-based arrays, and by Willis (2010) about their

altimetry/float combination. Here, for the first time, mooring- and float-based results will be compared, and

this will be done at a location that is not a purpose-built array and therefore has to consider error terms

that are carefully eliminated at the above arrays: The PAP-CIS section is not aligned zonally and therefore

is subject to an error from the Coriolis parameter f , because the current could be concentrated anywhere

along the section and f varies over the latitude range. Unlike in a coast-to-coast array, there can also be

flow around the section endpoints at PAP or CIS that would not appear in our volume transports. This

could be the result of local eddy features rather than the NAC, and will also be quantified here.

1.2. Methodology

For the geostrophy calculation, two pieces of information are needed at each section endpoint: the vertical

density profile, and knowledge of a reference level where the absolute dynamic height is known at one depth

Table 1: Data used in this study. A list with additional details, including links to data websites and version information, is
available in the supplemental materials to this study.

Data type Variables used Sources and references
Moorings Temperature, salinity, pressure PAP and CIS moorings from OceanSITES program

(http://www.oceansites.org)
Floats Temperature, salinity, pressure Argo program (http://www.argo.ucsd.edu)
XBT Temperature, estimated depth World Ocean Database (Boyer et al., 2018)
Mean profiles Temperature, salinity, depth (monthly

climatology from objective analysis)
World Ocean Atlas 2018 (Locarnini et al., 2019; Zweng
et al., 2019)

Altimetry Gridded sea level anomaly, formal map-
ping error

Copernicus Marine Service (https://marine.copernicus.eu)

Mean sea level Mean dynamic ocean topography MDT-CNES-CLS18, Mulet et al. (2019)
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layer. Here, the density profiles will come from the in-situ measurements: moorings, floats, or XBTs. Sea

surface measured by satellite altimetry is used as the reference level, and the latest data products deliver

estimates of the absolute dynamic sea surface height to sufficient accuracy (Gourcuff et al., 2011). Table 1

lists the data used in this study and their sources. The density is computed from the temperature and salinity

data in the profiles, whereby salinity in the XBT data is derived from a climatological temperature-salinity

relationship because XBTs only measure temperature. The property that is used in the computations is the

geopotential anomaly at pressure levels p, derived as:

Φ(p) = (MDOT + SLA)g +

∫ p

0

1

ρ− ρ0
dp (1)

Here, MDOT and SLA are the mean dynamic ocean topography and sea level anomaly from the satellite

products, g is the gravitational acceleration, and ρ − ρ0 the density deviation from a standard profile with

salinity 35 and temperature 0◦C (Fofonoff and Millard Jr., 1983). The geostrophic velocity across the section

at each pressure level is then derived from the difference the geopotential anomalies between the two end

points, as per

vgeo =
Φ2 − Φ1

fd
(2)

where f is the Coriolis parameter and d the length of the section. Summing up the velocities over the entire

depth range and multiplication with the section length d results in the volume transport across the section.

Mooring data naturally are from locations at either section end point, but float data are from instru-

ments that move. Likewise, the XBT profiles are pulled from a database of all available profiles, which are

distributed in space. Therefore, multiple profiles in a box around the target locations must be averaged for

floats and XBTs. Larger boxes will have better data coverage, but be less representative of the target loca-

tion. “Representativeness” is judged by computing volume transports between the target location and any

other location within the same box, based on climatological temperature and salinity profiles for geostrophic

velocity relative to no motion at a 1000 m reference level. To be representative, the sizes and shapes of the

boxes are chosen such that these transports do not exceed 2 Sv. This is a somewhat arbitrary choice, selected

to be an order of magnitude less than the expected NAC transports. The shapes of the boxes align with

bathymetry and exclude the boundary currents at the nearby shelf breaks, hence the somewhat irregular

shapes and offset “center” locations seen in figure 1. The data are also binned in time intervals, and again

a compromise needs to be made when determining the durations of these intervals: The intent is to show

interannual variability while not aliasing the yearly cycle. Therefore, half-year intervals are chosen. The

exact specifications of the time bins are: The initial time bin is centered on July 1, 2000, and the duration

of each bin is 182.625 days. With this choice, average numbers of float profiles are 29 and 42 per six-month

interval for the PAP and CIS boxes, respectively. For the XBT data, earlier intervals at the same spacing

are also used. XBT data availability is somewhat less regular over time, with some bins showing more than

40 profiles and others none. Sea level anomalies from the satellite altimetry data product are positively

correlated with each other anywhere within each box, with average correlations of 0.4 at PAP and 0.9 at
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CIS. This is another indication that the boxes are small enough to be locally representative. For both the

spatial and temporal averaging, geopotential anomaly is first computed from temperature and salinity data,

and the geopotential anomaly is averaged. To avoid biases due to spatial gradients or seasonal fluctuations

within the boxes, the local mean climatological profile, from the monthly climatologies of the World Ocean

Atlas 2018 (WOA18, Locarnini et al., 2019; Zweng et al., 2019), is first removed for each individual profile.

Then, the anomaly profiles are averaged. Finally, the mean profile of the central PAP/CIS location from

the middle of each time step is added back in. This avoids scenarios by which e. g. the average temperature

profile is biased because all floats are in one corner of the box, or from one particular month, as opposed to

being spread out evenly in space and time.

Additional details of the processing are as follows: Nominal site positions as shown in figure 1 are

49.0 ◦N, 16.5 ◦W for PAP, and 59.7 ◦N, 39.7 ◦W for CIS. Water depths are 4850 m and 2750 m at the

two sites. Minimum depths between the sites at the Mid-Atlantic Ridge are deeper than 1000 m, so that

there is no blocking topography that could invalidate the geostrophic assumption. Individual mooring

deployments are within 5–10 miles from the nominal positions. For mooring data, temperature and salinity

are available together with quality flags, and any data flagged suspect is rejected. The data files themselves

can either contain delayed-mode data available after instrument recovery with the best calibration quality,

a “provisional” version thereof with interim calibration quality, or a telemetered (“real-time”) version with

presumably the lowest calibration standards. The best available is chosen for any given deployment. Typical

instrument numbers on the moorings are 7-10 for PAP and 14 for CIS. Exact details on positions and

instrument numbers are available in the metadata of the source files, listed in the supplemental materials.

Temperature and salinity data are first binned into daily averages. Profiles that do not at least cover the

depth range 80–800 dbar are discarded. This removes mooring deployments without the necessary depth

coverage, as well as data during occasional mooring knockdown events caused by ambient currents. For the

remaining profiles, data are interpolated on a finer pressure grid, whereby not the original temperature and

salinity are interpolated, but rather the anomalies relative to a seasonal climatology (World Ocean Atlas

2018). Gaps above and below the 80-800 dbar range are extrapolated as needed, using a constant value of

the respective anomalies. Climatology profiles are then added back to derive the geoptential anomaly values

for the geostrophic calculation.

For floats, the data files can be real-time or delayed-mode as well, and the best available is chosen. The

files contain quality flags, and all data flagged suspect are rejected. In addition, data from floats listed

in a global list of problematic data, the so-called “grey list”, are rejected. Inside the files, temperature

and salinity are sometimes available in original and adjusted versions, the latter presumably with better

calibration corrections. In all cases, preference is given to the better version (adjusted data if they exist,

delayed-mode if they exist). Profiles that do not contain at least 60% good data in the 0–1000 dbar range

are rejected. Data are interpolated onto a vertical grid with 10 dbar spacing in the upper 100 dbar, tapering

to 50 dbar spacing at depth. This spacing does justice to the resolution of the early Argo data and has been
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shown to not limit the accuracy of the derived volume transport. Climatology values are applied as per the

previous discussion to remove spatial and temporal mean gradients. The supplemental material contains a

list of float data files that are used.

For XBT data, profiles shallower than 700 m are rejected, and the temperature and depth values are

used “as is” from the data files listed in the supplemental material. Obvious outliers are removed by gross

threshold checks and a short list of flagged profiles. XBT profile data are interpolated in the vertical in a

similar way to the float profiles, requiring at least 60% good data. For depths below 750 m, the original data

are replaced with a constant extrapolation of the last temperature anomaly from the climatological profile,

which is a crude solution to deal with increasing uncertainty at depth as well as different depth ranges of

different XBT types. After the vertical gridding of the temperature data, matching salinities are derived

from the time-averaged temperature-salinity curves at the two sites, and the geopotential anomaly derived

from these.

1.3. Assumptions Made in Calculations and Error Estimates

The above approach inherently neglects ageostrophic motion. This is most notably the wind-driven

circulation in the Ekman layer, which will not be considered here. In addition, geostrophy applies only to

motion on time scales of days or longer, and therefore cannot capture variability at higher frequencies.

Throughout this study, measurement errors will be expressed in units of volume transport (Sv). This

is a convenient description because we are interested in the NAC transport, and for any one given profile

of density, one can construct a hypothetical profile that has been subjected to simulations of certain error

sources (e. g. offsets in temperature and salinity) and compute what the volume transport would be between

the original and the modified profile using equations 1 and 2. Equation 2 requires a distance d, and it is

not obvious what that should be for the “hypothetical” profile. However, this d cancels out again when

computing volume transport from the velocities, and therefore one can use any fictitious d and the transport

is independent of the actual locations of two such profiles (apart from variations in the Coriolis parameter

f). The transport between the two would represent the actual transport error on the section caused by

uncertainty at one section end point, therefore making this fictitious profile a meaningful way to assess

transport errors. Figure 2 illustrates such a computation of a transport error based on small offsets in

temperature and salinity: There are two resulting profiles of the steric part of the geopotential anomaly (the

integral in equation 1). These two profiles are used to compute a profile of geostrophic velocity with some

choice of d, and the volume transport is computed over the upper 1000 dbar (shaded area). The transport

value indicated in the figure is independent of the choice of d, although the velocities are not.

Further, the assumption is made that the individual error estimates we will consider are statistically

independent of each other. Then, the variances add up to estimate the combined error, i. e. two errors σ1

and σ2 would result in a combined error σ of:

σ =
√

σ2
1 + σ2

2 (3)
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Figure 2: Illustration of how to compute transport error caused by temperature and salinity offsets. Left: Geopotential anomaly
from a temperature and salinity profile at the PAP site, integrated from the surface down (this is the integral in equation 1).
There is a second profile, difficult to see because it is so close to the original, computed from the same profile plus constant
offsets of -0.005 ◦C in temperature and +0.02 in salinity (to estimate e. g. Argo float sensor error). Right: geostrophic velocity
between the two profiles as per equation 2, assuming d = 60 nautical miles separation between them. Velocity is zero at the
surface, since the integration starts there, and increases approximately linearly with depth. The shaded area represents the
0–1000 dbar volume transport.

This is used for individual error components at one section end point, as well as for the total across-section

transport when it is computed from both section end points.

2. Error Estimates

2.1. Overview

We will quantify the following contributions to the observational uncertainty of the NAC transports in

this section: the effect of eddy variability masking the (large-scale) NAC in our sampling locations, the effect

of the non-uniformity of the Coriolis parameter f in our calculations, and measurement errors specific to each

observational data source. Later in the results section (figure 8), these will be revisited with a comparison

of which matters most.

2.2. Subsampling the Eddy Field

When addressing long-term, large-scale flow, eddies or other mesoscale circulation features are considered

noise that has to be averaged over. One source of error therefore is the remaining effect of eddy noise in

the transport data after averaging. To account for the chance of a profile being in a subsampled circulation

feature like a mesoscale eddy, an error σeddy is estimated based on the number of profiles available, Nprof,

and a factor ∆eddy that quantifies the typical strength of eddies:

σeddy =
∆eddy
√

Nprof

(4)

This assumes that individual profiles are statistically independent, which is validated by decorrelation time

scales for density from the existing moorings at PAP and CIS, the average of which is 3.5 d (4.1 d at PAP,
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Figure 3: Left: Estimation of transport uncertainty due to the eddy field (∆eddy in equation 4). In each box, pairs of Argo float
profiles that were between 30 and 90 days apart in time were used to compute transport between them, representing variability
on eddy time scales. Right: Estimation of transport uncertainty in XBT data due to measurement error and missing salinity
(∆sensor in equation 5). Here, Argo float profiles were used to compute what the transport would be between the original profile
and one containing a temperature profile offset by a random measurement error of 0.28 ◦C, and a salinity profile derived from
this temperature and a fixed, box-averaged temperature-salinity relationship. Numbers in the legends are standard deviations
of the underlying data. Thick lines are Gaussian distributions with matching means and standard deviations, shown just for
comparison. Note that the left and right panels have different axes limits.

2.7 d at CIS). Argo float data cannot resolve this time scale due to their 10-day sampling interval, but if

one computes decorrelation time scales from Argo data anayways, the values amount to 10–15 d. ∆eddy was

determined from Argo data by comparing multiple float profiles that were in the same box but 30–90 d apart,

and computing hypothetical transport values between any two such profiles (figure 3, left panel). The values

for the PAP and CIS locations are 3.2 and 1.7 Sv, respectively. Very similar numbers for ∆eddy are obtained

if, instead of floats, existing mooring data at PAP and CIS are used. Note that this estimate evaluates the

subsampling effect for the in-situ profiles only; eddies in the altimetry data are included in the discussion of

sea level anomaly below.

This ∆eddy number still needs to be reduced with the number of (statistically independent) profiles,

Nprof: For moorings, we assume that measurements after twice the decorrelation time scale, i. e. 7 days, are

statistically independent. This gives Nprof, moorings = 26 for each half-year period, and with that number,

σeddy, moorings is 0.7 Sv. For floats, typical numbers for Nprof, floats exceed 20, and σeddy, floats amounts to

0.7–0.9 Sv, depending on the data availability in a given time period. The number of available XBT profiles

in the boxes is rather low, which results in a larger σeddy, XBT for these, typically 2 Sv.

2.3. Sensor Offset

Calibration offsets in the density data are smallest for moorings, because these sensors are typically ad-

justed based on very accurate field data, using calibrations before deployment and after recovery (Karstensen,

2005). For floats, the nominal accuracies are a bit larger (Wong et al., 2003), and the derived transport

error from a sensor offset cannot be reduced by increasing the number of profiles from the same instrument.

Instead, it scales with the number of floats, assuming that different ones have randomly different offsets. The
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following error estimate accounts for such sensor offsets in temperature and salinity, based on the number of

platforms, Nplatform, and a factor ∆sensor judging the quality of calibrations:

σsensor =
∆sensor

√

Nplatform

(5)

For a mooring, Nplatform = 1, and the ∆sensor values are 0.20 and 0.16 Sv for PAP and CIS, respectively.

This assumes sensor offsets of -0.003 ◦C and +0.005 for temperature and salinity, an estimate of mooring

post-calibration performance based on Kanzow et al. (2006) and Karstensen (2005). σsensor is then 0.26 Sv

for the moorings, combining the two sites per equation 3.

Choices of ∆sensor for the floats are 0.7 Sv and 0.6 Sv (for the PAP and CIS boxes, resp.), totalling 0.9 Sv

as per equation 3. These values are based on vertically constant offsets of -0.005 ◦C in temperature and

+0.02 in salinity, an estimate of Argo float performance a bit more conservative than those by Wong et al.

(2003) and Riser et al. (2008). The principle of the computation is shown in figure 2. A correction still

needs to be applied to Nplatform: if e. g. the average is computed from two floats that each contributed five

profiles, Nplatform should be two. If, however, the first float contributes nine profiles and the second only

one, Nplatform should be closer to one because the average over the ten profiles is dominated by one platform.

Here, the effective number of platforms is computed as follows for floats: let p1,...,N be the number of profiles

that each of N floats contributes. Then, let s = 1
N

∑N

i=1 pi, and compute the effective number of platforms

as:

Nplatform =
N2s2

∑N

i=1 p
2
i

(6)

For the float data densities in the given choices of boxes and at the six-monthly resolution in time, σsensor is

typically 0.5 Sv for the float data.

XBT instruments do not measure salinity or pressure. Instead, the pressure is estimated from the time

elapsed since instrument launch, and the salinity derived from the temperature through a climatological

temperature-salinity relationship. Nominal XBT temperature sensor accuracy is typically 0.2 ◦C. Ishii and

Kimoto (2009) have evaluated depth errors due to an incorrect estimate of the fall rate, which can intro-

duce biases up to 5%. Such depth errors translate into an additional 0.2 ◦C temperature error for typical

stratifications at PAP and CIS. Combining the inherent temperature sensor error with the depth-induced

one with equation 3, we obtain 0.28 ◦C. Expected volume transport error from this 0.28 ◦C uncertainty and

the resulting uncertainty in salinity are shown in figure 3 (right panel) and amount to 2.0 and 1.5 Sv for

∆sensor,XBT at PAP and CIS, resp. After accounting for the number of profiles at both sites, σsensor,XBT

averages to 1.4 Sv over the full time series.

2.4. Sea Level Anomaly

For sea level anomaly, a gridded product is used that merges altimeter data from multiple satellites.

The data product comes with a formal error estimate (Ducet et al., 2000) at each grid point, which, when

multiplied with the signal variance, gives an error estimate of the sea level anomaly. For simplicity, these
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error values are averaged over the box areas and assumed constant here, although they vary in time with the

satellite constellation. The spatial averages over the boxes result in typical sea level errors of 1.5 cm at either

of the two locations. This would result in transport errors of 1.2 and 1.4 Sv from the two endpoints, the

combination of which is 1.84 Sv from equation 3. Assuming that each 6-month time window has 6 degrees

of freedom, and thereby dividing this number by
√
6, gives an uncertainty estimate of:

σalti = 0.8 Sv (7)

Note that the temporal decorrelation scale which the error estimates use is typically 15 days (Ducet et al.,

2000), which means that the numbers derived here are conservative in that they do not underestimate the

error. For comparison, Gourcuff et al. (2011) report altimetry uncertainty at around 3 cm/s when comparing

to surface velocities measured in-situ over section segments of 100 km length, which amounts to 3 Sv of volume

transport. The section from PAP to CIS is approximately 1900 km long. Under the assumption that the

segments are independent and the error is reduced by a factor of
√

1900/100 for the entire section, the total

value is 0.7 Sv, which is almost the same as what is estimated here.

2.5. Varying Coriolis Parameter

The transport computation is sensitive to the Coriolis parameter f , and thereby the latitude of the

location of the current. If the section is zonal, f will be constant along the section, as e. g. in the purposefully

designed arrays of Kanzow et al. (2006) and McCarthy et al. (2015). The section of the present study is not

oriented zonally, and the exact latitude of the current is not known. The same geopotential anomaly profiles

and sea levels at the endpoints will result in different currents if the current meanders back and forth. The

resulting error is estimated as follows: using the mean density profiles and ocean dynamic topographies,

the difference between the two extreme cases, meaning the current would be concentrated at either the

northernmost or southernmost latitude, is computed. This amounts to 4 Sv. The standard deviation over

all latitudes is:

σf = 1.2 Sv (8)

This value will be assumed as a temporally constant contribution to the error budget due to the unknown

f . If anything, this overestimates the error, because a comparison of altimetry-derived surface currents

from the PAP and CIS endpoints versus one computed with known f along the section shows a root-mean-

square difference of 0.5 Sv. Roessler et al. (2015, their appendix B3) follow a similar approach to quantify

uncertainty due to varying f for their section.

Another important aspect of the Coriolis parameter is that the geostrophic transports scale with its

reciprocal, 1/f . The uncertainties due to in-situ sensor offset and sea level anomaly, shown in equations 5

and 7, will get larger closer to the equator. At 22 ◦ latitude, f is about half of what it is at PAP, meaning

that the corresponding errors there are about twice as large.
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2.6. Subsampling in the Vertical Dimension

The density values in the profiles are measured at discrete depths in the vertical, which will result in

a misrepresentation of the actual profiles when filling the gaps by interpolation. The moorings here use

approximately 10 sensors in the upper 1000 m (Fan et al., 2013; Karstensen, 2005). Argo floats usually

measure on a pre-defined vertical grid structure with at least 40 data points in the upper 1000 m, and XBT

have even finer vertical resolution of typically 1 m. To estimate the effect of vertical subsampling on the

resulting transports, ship-based CTD data from a cruise in the North Atlantic (Schott et al., 2002) were

subsampled accordingly in the vertical, and hypothetical transports were computed between original profiles

and subsampled profiles. All CTD casts from cruise Meteor 50/4 that covered a sufficient depth, a total of

63 casts, were used. For moorings, the resulting error is 0.28 Sv per profile. For the mooring calculations

here, this will be added to the error due to sensor offset as in equation 3. One might expect some reduction

of this error when data from different times are averaged, because the stratification and its effect on the

sampling changes with time. For simplicity, this error is assumed to be constant here, which is a conservative

estimate. The resulting number for floats is 0.05 Sv per profile, and therefore negligible, and the XBT value

would be even smaller.

2.7. Ageostrophic Components at High Frequency

Fluctuations on frequencies too high for geostrophy, such as internal waves, can displace the density

structure and therefore lead to wrong computations of geostrophic transports. Judging from existing mooring

data at both PAP and CIS, this effect subjects an individual profile to a measurement error of 0.35 Sv. This

number was obtained by estimating hypothetical transports between profile data from the same mooring, but

separated in time by time scales shorter than geostrophic. However, due to the way the eddy uncertainty was

estimated (section 2.2), this is already included in the eddy error estimate and needs no further consideration.

2.8. Mean Dynamic Ocean Topography:

To obtain absolute transports, an MDOT is added to the altimetric sea level anomalies. Here, the recent

product MDT-CNES-CLS18 is used (Mulet et al., 2019). We assume that the large-scale error is dominated

by errors in the geoid field derived from the GRACE satellites (Reigber et al., 2005). At the corresponding

scales and locations, the error is expected to be 2 cm or less, resulting in an uncertainty of around:

σMDOT = 2Sv (9)

This error is constant with time and therefore not relevant for discussions of variability. Rather, the MDOT

sets the mean transport across the section to 26.7 Sv. Alternate choices of earlier MDOT products (Niiler

et al., 2003; Rio et al., 2005, 2011) result in mean transports of 25.9, 27.0, or 30.8 Sv, respectively. Disagree-

ment between the four different MDOT products is 2.2 Sv, computed as the standard deviation across the

four mean values. This number is consistent with our choice of σMDOT in equation 9.
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3. Results and Discussion

3.1. North Atlantic Current Time Series

Figure 4 shows the vertical profiles of the across-section velocities, derived from the combination of

MDOT, altimetry, and float data. The MDOT plus altimetry data are the geostrophic reference that

determines the values at the surface, and the float data provide the density structure that shows how the

flow changes with depth (equations 1 and 2). Each profile is for a temporal average over half a year, and the

end-point technique automatically averages spatially along the section. Typical velocities near the surface

are 2.5 cm/s, decaying approximately linearly to near 0.5 cm/s at 1000 m depth. The integral over a profile,

when multiplied with the appropriate section length (1900 km), gives the volume transport across the section.

Panel (a) of figure 5 shows the resulting time series of the volume transport of the NAC for the time period

2002–2018, each data point resulting from one of the profiles of figure 4. Argo data availability now allows

for a record exceeding 15 years duration, with minor gaps. The mean transport across the PAP-CIS section

is 26.7 Sv, with semi-annual values ranging between 21.8 and 32.3 Sv. The summer of 2010 stands out with a

particularly low value; the highest values are observed in the more recent years, and particularly the winters

of 2015/16 and 2017/18. Included in the figure are error bars composed from the uncertainties discussed in

the previous section. Upon close look, one can see that the error bars tend to be smaller in the later years,

reflecting the increasing number of floats in the water. For a large part of the record (e. g. the early years

2002–2006), variability of the transport values does not exceed the observational uncertainties, as seen by

overlapping error bars. However, the higher values later in the record (e. g. 32.3±1.6 Sv for winter 2015/16)

seem to be statistically significant in that they differ from the earlier low values (e. g. 21.8±1.6 Sv for summer

2010) by more than the uncertainties. The difference between these extreme values (10.5 Sv) is more than

6 times the estimated uncertainty, which gives high statistical significance (one-sided p-value below 10−10).

We therefore conclude that the NAC experiences interannual variability, at least on multi-year time scales,

that is sufficiently large to be observed by this methodology. Typical changes on shorter time scales such

as from one year to the next, computed as the root-mean-square of the differences between data points one

year apart, are 2.0 Sv, which is too small to stand out above the typical uncertainties. The bar on the left

side of figure 5, panel (a), shows the uncertainty of the MDOT from equation 9, which was determined from

comparing different MDOT products as well as from the typical uncertainty of the gravimetric satellite data.

This could add a constant offset to the entire time series and thereby change the mean, but would not affect

the variability.

Lherminier et al. (2007, their figure10) have reported transports across their OVIDE section, which is close

to the PAP-CIS section, using an inverse model. For an expedition in summer 2002, values from their three

upper cells between the Irminger Sea and the West European Basin add up to 27.6± 2.9 Sv. Figure 5 here

shows the corresponding 2002 value as approximately 24.8±2 Sv, agreeing within the uncertainty estimates.

The direct comparison with the study by Gourcuff et al. (2011, their figure 9), who also use OVIDE data, is

challenging because they define the NAC as spanning a different region, excluding the Irminger Current part.
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Figure 4: Vertical velocity profiles indicating the flow across the section shown in figure 1. Thin lines represent profiles in
individual half-year time steps covering the period 2002–2018, the thicker line is the mean over the entire record. The velocities
are computed from Argo float data, geostrophically referenced to sea level anomalies measured by satellite altimetry, plus the
MDOT.

Nevertheless, their reported 2002–2006 evolution has some resemblance to what figure 5 shows here. One

interpretation of any discrepancy would be that variability in the Irminger Current partially compensates

the other NAC branches. There is some evidence of this compensation in figure 2.3 by Lankhorst (2007).

Yet another NAC estimate is available from a shorter section near the Mid-Atlantic Ridge, published by

Roessler et al. (2015) with more recent updates available (Rhein et al., 2019), but the comparison with the

PAP-CIS section is hampered by the differences in location and depth ranges. Time series of the AMOC

by Mercier et al. (2015, their figures 5 and 6) include the underlying data used by Gourcuff et al. (2011),

but the methodology to derive the time series is different in that Mercier et al. (2015) show an estimate

of the overturning across their whole Greenland-Portugal section, as opposed to a transport over parts of

the section. Agreement between the PAP-CIS data shown here and the records by Mercier et al. (2015) is

not obvious. In particular, their 2010 values are high, as opposed to the minimum seen in figure 5 here.

There certainly can be NAC branches that bypass PAP-CIS (Daniault et al., 2016) but remain in the data

from Mercier et al. (2015), and evaluating the overturning in density coordinates as they do is necessarily

different from an NAC transport in depth space. AMOC-related records that do show a 2010 minimum are

available from tide gauges and ship-based velocity measurements in the Gulf Stream (Ezer, 2015), as well as

the AMOC estimate from the 26◦N array (Bryden et al., 2014) and the 41◦N data based on the methodology

by Willis (2010), as reported by Baringer et al. (2018). The latter also reports from the 16 ◦N array (Kanzow

et al., 2006), where the 2010 anomaly appears to be southward in the lower branch of the AMOC. Unlike

the northward-flowing upper AMOC branch, a southward anomaly in the southward-flowing deep branch

would be interpreted as a strengthening of the AMOC. We cannot resolve the nature of the 2010 Atlantic

circulation anomaly here, but conclude that there was a minimum of the NAC flow across the PAP-CIS

section at that time which coincides with basin-wide circulation anomalies in published data records.
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(c) Altimetry

Figure 5: Panel (a): NAC volume transport time series derived from the data shown in figure 4 (MDOT, altimetry, and floats)
by integrating over the upper 1000 dbar. Error bars include the uncertainties from eddy variability, sensor offset, altimetric
sea level anomaly, and Coriolis parameter. The thick line on the left denotes the uncertainty from the MDOT from equation
9, which does not vary with time but might add a constant offset to the entire time series. Panel (b): Volume transport from
float data referenced to the constant MDOT at the surface (black), or to a constant velocity at 1000 dbar (grey, 5 mm/s, cf.
figure 4). Panel (c): Volume transport from the sea level anomaly difference in the satellite altimetry, assuming constant flow
over the upper 1000 m. The data in panel (a) is the sum of the black curve of panel (b) plus the one of panel (c).
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Panels (b) and (c) of figure 5 show what the individual contributions to the time series of panel (a)

are, separating in-situ measurements by the floats and space-based observations by the altimeters. For this

purpose, the float data in figure 5 (b) are computed as geostrophic velocities relative to a level of known

motion. One version uses a constant reference velocity of 5 mm/s at 1000 dbar, which is based on the deep

values seen in figure 4 and might resemble what one would do if no altimetry data existed. The other version

uses a constant reference level at the surface, which is the MDOT. The two are anti-correlated, because the

density structures are such that the velocity changes with depth are more or less linear (figure 4), and in such

a situation, holding the top versus the bottom reference level constant results in variability of opposing signs.

The altimetry data in figure 5 (c) are based on the differences in sea level anomaly and assume constant flow

over the upper 1000 m to derive a volume transport in units of Sv. The sum of the figure 5 (c) curve and the

MDOT-surface-referenced 5 (b) curve is the total shown in figure 5 (a). The altimeter data contribute the

majority of the variability, with a correlation of 0.90 against the total transport and a standard deviation

of 3.7 Sv. Values for the MDOT-surface-referenced float time series are -0.52 for the correlation and 2.0 Sv

standard deviation. This is perhaps not too surprising, since the NAC is a surface-intensified current, and the

surface velocities are what the altimetry measurements are sensitive to. The dominating role of the altimetry

measurements over the density profiles can already be seen in figure 4, where the individual profiles have

very similar shapes throughout the water column, the differences between profiles being primarily offsets

that are vertically quite constant and therefore captured by the altimeters at the surface. The in-situ data

contribute less to the observed transport variability, but they still provide two key pieces of information:

firstly, they deliver the vertical structure needed to convert the altimetric signal into a volume transport (i.

e. turn “centimeters of sea level anomaly” into “Sverdrups of volume transport”), and secondly, they are

needed to compute the overall uncertainty of the transport values. In other words, the altimetry data carry

most of the variability of the signal, and the in-situ data are needed to put the constraining error bars around

them.

Figure 6 (panel a) shows a time series of the altimetry data alone, in comparison with the combined

time series of figure 5. This is motivated by the observation that most of the variability in the combined

time series is in the altimetry record, as seen by the high correlation earlier, and follows studies that have

described large-scale circulation changes based on altimetry alone (e. g. Häkkinen and Rhines, 2004). Here,

the altimetry-only data were generated using a regression onto the full time series. The regression results in

a gain factor and an offset to convert the altimetric sea level anomaly difference between the PAP and CIS

sites into a proxy that resembles the NAC volume transport:

NACregression = 4.692(ΦPAP − ΦCIS) + 26.04 (10)

In this equation, altimetry data are expressed as geopotential anomaly Φ in units of m2s−2, which one can

get by multiplying the sea level anomalies with the local gravitational acceleration g. The resulting NAC

values are in units of Sv, and the figure shows box-averaged altimetry data both as six-month averages and

at the original temporal resolution. Note that the uncertainty estimates from this paper are for six-monthly
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Figure 6: NAC volume transport time series derived from different observational datasets. The black graphs are identical to
panel (a) of figure 5 and are from Argo float data referenced to the sea level anomaly from satellite altimetry and the MDOT.
Panel (a): Colored graphs show a regression of altimetric sea level anomaly differences that best matches the black curve. The
thin line shows the altimetry data at daily resolution, and the dots are semi-annual averages. Panel (b): Three colored markers
show mooring results referenced to the altimetry plus MDOT. Panel (c): Colored markers show XBT data referenced to the
altimetry plus MDOT. Panel (d) shows the differences against the data from altimetry plus floats (i. e. differences to the black
graph). Colors and symbols in panel d match the upper three panels.
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data only, and only for those time series that incorporate the in-situ measurements, so the uncertainty of

the altimetry-only time series is not established. That said, the root-mean-square difference between the

original time series with the uncertainty estimates (black in panel a of figure 6) and the one derived from the

regression (light red color) is 1.0 Sv. Altimetry data are available for the past 25 years, going back in time

another decade before the Argo data. If the correlation between total transport and altimetry data from

2002 onwards holds also for the earlier decade, the altimetry proxy shown in figure 6 (a) is a continuous,

multi-decadal time series of the NAC transport that follows earlier examples with altimetry data (Rhein

et al., 2019; Mercier et al., 2015; Willis, 2010; Häkkinen and Rhines, 2004). It shows persistently high values

near 29 Sv in the early years (1992–95) as well as recent years (2015–18), with mostly lower values around

25 Sv inbetween. The decrease from the 1990s is well-known (Mercier et al., 2015; Häkkinen and Rhines,

2004), and likely related to changes in the North Atlantic Oscillation (NAO). The 2010 transport remains

the lowest value overall, even in the extended time series.

Figure 7 shows the underlying altimetry and float data used to compute the currents and volume trans-

ports from figures 4 and 5. The PAP-CIS sea level difference from altimetry is shown in figure 7 (a) together

with a wintertime NAO index (Barnston and Livezey, 1987). The 2010 and 2015/16 extrema in our NAC

time series follow what were the most extreme negative and positive NAO index values in the time period

1993–2018. Sea level anomalies from both PAP and CIS are shown in figure 7 (b) and contribute roughly

equally to the NAC signal: standard deviations of the six-monthly time series are 3.2 and 3.7 cm, respectively.

The 2010 anomaly is caused by a combination of low sea level anomaly at PAP in the winter of 2009/10

and the summer of 2010, and high values at CIS in summer of 2010 and winter of 2010/11. The trend

towards higher NAC transports since 2013 is caused by lower sea level anomalies at CIS in the 2014–2017

period, and a strong increase at PAP 2015–2018. The low sea levels at CIS in 2014–2017, as well as similarly

low values in 1993–1995, correspond to high values of the NAO. High NAO leads to surface cooling in the

subpolar North Atlantic, and can induce deep convection in the Irminger Sea (de Jong and de Steur, 2016;

Pickart et al., 2003), which is consistent with the observed sea levels. An additional signature of such cooling

and convection is visible in the density observations at CIS, shown in figure 7 (d). These are denser than

usual in 2014–2017. It would be this colder-than-usual, denser water that drives the sea level anomalies

down. However, the sea level and density anomalies at PAP, shown in figure 7 (b) and (c), do not follow the

NAO pattern as consistently. While the strong sea level increase in 2015–2018 coincides with a high NAO,

a similarly strong increase is not seen during high NAO in the 1990s. Likewise, although the density data

at PAP show a lighter anomaly during 2015–2018, there are similar density values in other years for which

neither the NAO nor the sea levels are remarkable (2005–2006). The 2015–2018 sea level signal at PAP must

therefore be caused either by density changes in the deep ocean below our measurements (1000 m), or by an

increased ocean mass that would be observable in seafloor pressure.
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Figure 7: Altimetry and float-derived density observations at PAP and CIS. Panel (a): Winter (January-March average) NAO
index and PAP-CIS sea level anomaly difference from altimetry as NAC proxy. Both time series are normalized; the NAC
proxy is otherwise as in figure 6 (a). Panel (b): Sea level anomaly from altimetry at PAP and CIS. Thick lines show half-year
averages, thin lines original resolution. Panels (c) and (d): Density deviation from WOA18 monthly climatology as observed
by floats, also in half-year averages. Currents and transports in figures 4 and 5 were computed from the data shown in panels
(b)–(d) here.
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Figure 8: Time-averaged transport error by contributions from
uncertainties in the altimetric sea level anomaly (SSH), Coriolis
parameter (f), the subsampled eddy field, and sensor offsets.
The total is the root-sum-square of the individual contribu-
tions. The errors are further categorized by the three different
in-situ systems used to obtain the density profiles (moorings,
floats, XBT).

3.2. Comparing the In-Situ Systems: Moorings, Floats, and XBT

Panels (b) and (c) of figure 6 compare the transport estimates from the three different in-situ systems,

each with altimetric sea level anomaly plus MDOT as the geostrophic reference level. While there have

been moorings at the PAP and CIS sites for many years, their initial purpose was to make near-surface

biogeochemical measurements (e. g. Hartman et al., 2010). There are two relatively short periods when

temperature and salinity data are available down to 1000 m at the PAP and CIS moorings simultaneously,

for a total of about 16 months of data out of the 2002–2005 time period. XBT data availability is spread out

more evenly over the 25 years studied here, and float data availability only started in the early 2000s with

the Argo program. Agreement between the methods is for the most part within the error bars, whenever

data availability allows for such a comparison.

The measurement uncertainties involving the three in-situ systems (moorings, floats, XBT) are shown in

figure 8. The figure shows the time averages of uncertainty over all half-year intervals that actually contain

data. Not included is the uncertainty of the MDOT, i. e. the mean transport. The uncertainties in the

altimetric measurements and those due to the Coriolis parameter f are identical for all three in-situ systems

by construction, and are 0.8 and 1.2 Sv, respectively. Totals were computed as root-sum-squares via equation

3.

The error budget for the mooring measurements, when averaged in six-month intervals, comes to a total

uncertainty of 1.7 Sv. This number consists of the above common uncertainties plus eddy field uncertainty

of 0.7 Sv, and sensor offset and vertical resolution effects of just under 0.4 Sv combined. Figure 9 shows a

close-up of the period that had mooring data available, and allows a comparison of the semi-annual averages

with the daily data unique to the moorings. A benefit of the high temporal resolution of the mooring data is

that the evolution of the eddy field at the sites is resolved, which was used in section 2.2 to quantify the time

scales associated with the eddy field. Some of the up- and downswings in the daily data from figure 9 are

local eddies, and the error bars around the averages take these into account and quantify the uncertainties of

the derived large-scale NAC transports. The error values for the floats are almost identical to corresponding

ones from moorings: average uncertainties arising from the subsampled eddy field are 0.7 Sv as well, and

from sensor error around 0.5 Sv. The overall uncertainty is then also 1.7 Sv. However, the uncertainties vary
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Figure 9: NAC volume transport time series from the PAP and CIS mooring data referenced to sea level anomaly from altimetry
plus MDOT. The square symbols are the data from figure 6 (b), which are averages of the daily data (black line) for these time
periods: 09-Oct-2002 to 09-Dec-2002, 19-May-2004 to 18-Nov-2004, and 18-Nov-2004 to 20-May-2005. Computation of the error
bars took the different segment lengths into account (as per equation 4). The left and right panels are separated by a longer
data gap; additional smaller gaps are due to mooring subduction in strong currents, or otherwise missing data. Transports
could not be computed at other times, because the two moorings were not in the water simultaneously or the instrumentation
did not adequately cover the upper 1000 m.

with time, according to the amount of float profiles available. In the earlier years (prior to 2010), smaller

amounts of float data typically caused the eddy and sensor uncertainties to be near 0.9 and 0.6 Sv. The

sensor error of the XBT data is estimated at 1.4 Sv, but the overall uncertainty of 2.7 Sv is dominated by

the larger contribution from the subsampled eddy field at 2 Sv. This is due to the transient sampling by

the occasional ship passing by, and is worse for the more recent decade during which the distances between

subsequent stations have increased along the lines. However, the way the data are used here does not do

justice to the nature of XBT observations: They are usually deployed along an entire line, as opposed to only

at the two endpoints of the line. While geostrophic flow is ultimately determined by the endpoint values, the

other points along the line would usually average out parts of the eddy field spatially, and thereby improve

the error budget in a way that is not properly represented here. If there were an XBT line along the PAP-CIS

section, one might imagine that using data along the line in addition to the endpoints would meaningfully

average out at least two eddies, possibly more, near the section endpoints. Two eddies less would lead to an

improved error by a factor of at least 1.4 in equation 4, a reduction big enough to have an impact on the

total error.

Perhaps surprisingly, the error arising from the actual sensor uncertainties tends to be the smallest

contribution to the total. Considering how much effort has gone into proper adjustments of salinity data

from floats and moorings (e. g. Böhme and Send, 2005; Karstensen, 2005), the benefits over XBT data are

disproportionally small in the sensor-related error budget alone. The key difference between XBT data and

floats or moorings comes in through the amount of data collected, which serves to reduce the uncertainty

from subsampling the eddy field. Moorings accomplish this through continuous sampling in time, which gives

a statistically independent value every time the typical decorrelation time period has passed (less than ten

days). For floats, the Argo program has accomplished this through a robust deployment cycle that maintains

a sufficient number of instruments in the water, although this by itself cannot guarantee that the required

number of instruments actually drift into the area where they are needed for a particular study. Panel (d)
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of figure 6 shows the differences between the observational data sources. As previously noted, the altimetry

data contains most of the signal. If we then assume the altimetry together with the floats to be the true

values for comparison purposes, it is not clear that the combination using XBT does better than altimetry

alone: the deviations of the “x” symbols from the zero line is not smaller than that of the dot symbols in

the figure. This is another way of expressing the relatively large uncertainty within the XBT-based time

series. The availability of some XBT data in the 1990s (figure 6 c), however, validates the altimetry-only

proxy record to a degree that we can have confidence in the higher transports of these early years.

3.3. Importance of Sensor Offsets for Thicker Layers and Lower Latitudes

Section 2.3 discusses the error in volume transport due to sensor error of the in-situ salinity, temperature,

and pressure data. The term ∆sensor in equation 5 quantifies the size of the error, and has been determined

from comparing an original profile against one with vertically constant offsets, as shown in figure 2. Compared

to temperature and pressure, the salinity calibrations are the most problematic (Kanzow et al., 2006; Böhme

and Send, 2005). In the study here, the sensor offsets are the smallest contribution to the error budget (figure

8). To illustrate that this is not always the case, figure 10 explores how ∆sensor depends on two properties:

the magnitude of the salinity offset, and the thickness of the layer over which the transports are computed.

This assumes that the geostrophic reference level is at one edge (upper or lower) of the layer in question.

∆sensor increases linearly with the salinity offset, but increases with the square of the layer thickness. The

latter can be understood from the lower right panel of figure 2, where the transport is the shaded area. The

shaded area is the area under a curve that is more or less linear, and the integral to compute this area results

in the quadratic exponent. The circled labels 1 and 2 in figure 10 show the choices of ∆sensor for mooring

and float data, respectively, from the PAP site that were used in section 2.3. Because the layer thickness

considered here is only 1000 m, the errors do not accumulate to a degree that makes them a significant

contribution to the total budget. This would not be the case if the volume transports were computed down

to 2000 m depth, for example, as indicated by the shading that corresponds to the signal strength here.

Circled label 3 refers to the mooring array by Kanzow et al. (2006), which computes transports over a much

larger layer thickness, with the additional notion that the error would be even larger than shown in figure

10 by a factor of 2.7 due to the lower latitude of their array. This is an example where the smaller sensor

offsets in well-calibrated moorings are critically important, because the uncertainties in float data would be

prohibitively large. Kanzow et al. (2006) argue that their errors from the salinity sensors are actually around

1.5 Sv, rather than the 1.0 Sv ∗ 2.7 = 2.7 Sv expected from figure 10, because their salinity offsets are not

vertically constant and thus cancel out to some extent. Figure 10 can also be used for planning purposes

of future applications: it describes the approximate salinity accuracy required to meet a transport accuracy

for a given layer thickness.
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Figure 10: Transport error [Sv] contribution from sensor offset (∆sensor in equation 5), as a function of salinity offset and layer
thickness. Underlying hydrography data is from climatological values at the PAP site. Shading indicates values greater than
2.6 Sv, which is the standard deviation of the signal in figure 5 (panel a). Labels 1 and 2 show values used here for moorings
and floats, respectively. Label 3 refers to the mooring values used by Kanzow et al. (2006). Offsets in temperature or pressure
were not used here. The transport errors are specific to the latitude due to the Coriolis parameter; latitudes of 22 ◦ or 14 ◦

would result in double or triple these numbers, respectively.

4. Conclusions

We have compared the observational uncertainties of the NAC volume transport variability from satellite

altimetry observations together with in-situ data from moorings, floats, or XBTs. The NAC crosses the

Atlantic between the PAP and CIS sites, and its transport is derived from observations at these locations

under the assumptions of geostrophy. For moorings, calibration options and practices exist (Karstensen,

2005; Kanzow et al., 2006) that result in superior data accuracy. Their continual presence at a given target

location allows to average over the eddy field and other meso- and submesoscale signals, effectively minimizing

noise and further improving accuracy. Maintaining moorings for long periods of time can be a challenge,

obvious from the shortness of the record in figure 6, but is routinely accomplished elsewhere (Send et al.,

2011; McCarthy et al., 2015; Zantopp et al., 2017; Lozier et al., 2019). Argo floats are now widely available,

and this study has found their numbers sufficient to derive the NAC transport in semi-annual averages, by

selecting data from areas around the PAP and CIS sites. It is necessary to quantify the local eddy field and

other under-sampled features, to define appropriate sizes of these areas and time intervals. With the choices

made here, the observed signals are representative of the large-scale NAC. The resulting NAC time series

based on altimetry data plus floats exceeds 15 years duration, and has a well-quantified uncertainty that is

smaller than the observed decadal variability. Using XBTs as the in-situ data at section endpoints does not

do proper justice to the instrumentation, because they are not used along a contiguous section as they ought

to be. This results in a limited number of data points, which in turn drives the error estimates up. However,

the errors are sufficiently small for the data to be useful, and thanks to XBT data availability in the years

before the mooring and float deployments, we can derive the NAC strength for some of these earlier years

as well.
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Typical uncertainties are shown in figure 8. For the combination of altimetry with either moorings or

floats, these are below 2 Sv. This resolves the observed signal, which is 11 Sv peak-to-peak (2.6 Sv standard

deviation) for a time series that consists of six-monthly averages. In this particular example for the PAP-

CIS section, errors due to the unknown Coriolis parameter dominate the error budget (1.2 Sv), because the

section is not aligned in an east-west direction. This error component scales linearly with the difference

in latitude between the sites, and would be zero for a zonal section. Uncertainty from the altimetry data

product is circa 0.8 Sv, and sub-sampling of the eddy field contributes about 0.7 Sv. Sensor calibration

errors contribute 0.5 Sv or less for moorings or floats, which is negligible in our application here. However,

figure 10 explains where the sensor calibration might be a significant source of error: it scales linearly with

the size of the calibration offset, but increases quadratically with the vertical size of the layer over which

transports are computed. The 1000 m layer size used here is small enough, but a thickness exceeding 2000 m

would likely require the high sensor accuracies from well-calibrated moorings for useful transport estimates

on these timescales. Other situations that are currently not accessible with float data are currents at or near

the ocean boundaries, because the number of instruments available on the inshore side is usually insufficient.

In this application, the interannual variability is dominated by the surface values from the satellite

altimetry. This allows a reconstruction of the NAC time series back to 1993, resulting in a 25-year time

series that shows decadal variability. There is a correlation with the NAO, such that high wintertime NAO

is correlated with high NAC transports, and for the CIS site, the causality is understood to involve cooling

and thereby increasing the density of the seawater. The evolution of sea level at the PAP site, however,

contributes just as much to the observed NAC variability, and its causes are not as well known.

There are technologies currently under development that are relevant to the methods used here: Swath

altimeters (Durand et al., 2010) will resolve the sea level anomaly even better. This will draw down the

errors from subsampling the meso- and submesoscale structures at the surface, which are part of the “SSH”

error in figure 8. Moored profiling sensors already exist (Doherty et al., 1999; Send et al., 2013) and offer an

opportunity to boost mooring accuracy even further, by eliminating the issues of limited vertical resolution.

This, as well as continued attention to data quality and calibration for the Argo floats, improves the “sensor”

error in figure 8, which gets increasingly important in applications that span larger depth ranges than this

study does. Finally, Argo is expanding into the deep ocean (Jayne et al., 2017), and will soon become

a feasible data source in depths below 2000 m as well. This opens up options to observe certain deep

currents with Argo, at least in locations where the currents are detached from the shelf break, such as

interior pathways of the lower limb of the AMOC. For this to work, the “sensor” error contribution will need

careful management and possibly improvement, because of the larger layer thicknesses involved (figure 10

here). There are multiple AMOC observing systems, which measure different parts of the circulation with

different methodologies (McCarthy et al., 2020; Frajka-Williams et al., 2019). Interpreting them together and

deriving insights from more than one location remains a challenge, and synthesis across multiple observational

datasets should be an ongoing focus of AMOC studies. This study offers another time series, of the NAC,
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as an additional piece of the puzzle.
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